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Abstract:  Rubin's Lemma is an inhomogenous type inequality which is satisfied by the sequence of 

dyadic martingales. In this paper, we give a proof using the measure theoretic approach which is simpler 

and different than the original probabilistic approach. 
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1. Introduction 

Rubin's Lemma is an inequality associated to a sequence of dyadic martingales and plays a vital role in 

the law of the iterated logarithm of dyadic martingales and harmonic functions.  These law of the iterated 

logarithm give the asymptotic behaviour of the sequence of both functions: dyadic martingales and  

harmonic functions. We can study the  role of Rubin's Lemma in the asymptotic behaviour of these 

functions in the various papers, for instances we refer a few [2] and [5]. In these papers, we find 

applications of the lemma in order to estimate the size of various sets in the law of the iterated logarithm. 

There are much more literature available related to the law of the iterated logarithm in various contexts, 

for instances [1], [3], [4], [6] and [8]. The proof of the Lemma can be found in [2] in which the proof uses 

the probabilistic approach. In the present work, we give a proof of the Lemma using the measure-theoretic 

approach.  The original proof  uses the probabilistic tools of statistics whereas our method uses the simple 

tools of measure theory which can be easily followed and thus the new proof is simpler in comparison 

with the original proof. Moreover, our method provides the proof of the lemma in the setting of 

mathematical analysis. 

2. Definitions and Notations   

Before proceeding with the main work, we first fix some notations and give some basic definitions which 

will be used in the course of proof. 

A dyadic subinterval of the unit interval ,   - is an interval of the form 0
 

  
 
   

  
/ where           and 

              

A dyadic martingale is a sequence of integrable functions *  +   
              ,   )    such that 

a. for every n,    is    measurable where    is the sigma algebra generated by the dyadic intervals 

of the form 0
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b. conditional expectation  (     |  )      where 
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  Associated with a sequence of dyadic martingales *  +   
 , we define: 

i. increments:             So   ( )  ∑   ( )      
 
    

ii. quadratic characteristics or square function:   
  ( )  ∑   

 ( )  
    

iii. limit function    ( )          
  ( )  ∑   

 ( )  
    

 

We now state the inequality associated to  the dyadic martingales and this inequality is called Rubin's 

Lemma according to [7]. 

 

Rubin's Lemma: For a dyadic martingales *  +   
    with       we have  

∫   (  ( )  
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We now give the proof the lemma using a different approach than the original proof. 

3. Proof of the Main Result 

 

Let us first define 
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We now claim that the function  ( ) is a decreasing function of n. Let     be an arbitrary n
th
 generation 

dyadic interval. One can see that  ∑   ( )
 
       and    is constant on      

Using this fact, we have 
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Let  (   ) 
  and  (   ) 

   be the dyadic subintervals of    . Suppose      takes the value   on  (   ) 
  . 

 Then by expectation condition,       takes the value    on  (   ) 
     

This gives 
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Now using the elementary fact that            .
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 Let     and     be the dyadic subintervals of   . Assume that     takes value   on     so that it takes 
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Since  ( ) is decreasing and  ( )      we conclude that  ( )      

This gives  

∫   (∑   ( )
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Hence,   ∫    (  ( )  
 

 
   

  ( ))     
 

 
 

This proves our result.  

Finally we note that if  we rescale the function  by some    we have  

∫   (   ( )  
 

 
     

  ( ))     

 

 

 

This shows that the Rubin's Lemma is an inhomogeneous type inequality. 
 

Conclusion 
 

 In this paper, we derived an inequality associated to a sequence of dyadic martingales which is popularly 

known as Rubin's Lemma. We used the measure theoretic approach to prove the inequality which is 

different than the original probabilistic approach. 
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