Code No.: **MDS 554**

Course Title: Multivariable Calculus for Data Science Full Mark: 75

Nature: **Theory**(Compulsory) Credit: 3

Course Description:

This course extends single variable calculus to higher dimensions. It will cover the vocabulary for understanding fundamental processes and phenomena and provide important background needed for further study in many diverse fields, particularly in data science. It will build tools to describe geometric objects and apply problem solving methods to answer a variety of questions, mathematical and otherwise.

Course Objectives:

After successful completion of this course, the student will be able to

- Learn vectors and the geometry of space
- Work with Vector functions
- Learn partial derivatives
- Compute multiple Integrals
- Learn vector calculus

Course Contents:

Unit 1: Vectors and the Geometry of Space

[6 Hrs.]

Three-Dimensional Coordinate Systems

Vectors

The Dot Product

The Cross Product

Equations of Lines and Planes

Unit 2: Vector Functions

[8 Hrs.]

Vector functions and space curves

Derivatives and integrals of vector functions

Arc length and curvature

Motion in space

Unit 3: Partial Derivatives

[12Hrs.]

Functions of several variables

Limits and continuity

Partial derivatives

Tangent planes and linear approximation

Chain rule

Directional derivatives and gradient vector

Maximum and minimum values

Lagrange multipliers

Unit 4: Multiple Integrals

[10Hrs.]

Double integrals

Polar coordinates

Applications of double integrals

Surface area

Triple integrals

Change of variables in multiple integrals

Unit 5: Vector Calculus

[12Hrs.]

Vector fields

Line integrals

Green's theorem

Curl and divergence

Parametric surfaces and their areas

Surface integrals

Stokes' theorem

Divergence theorem

References:

- 1. Edwards, Henry C., and David E. Penney (2002) . Multivariable Calculus. Prentice Hall,
- 2. Oliver Knill (2018). Multivariable Calculus, Harvard University

http://people.math.harvard.edu/~knill/teaching/summer/

- 3. James Stewart, Multivariable Calculus (2009). Concepts and Contexts, Cengage Learning.
- **4.** Denis Auroux (2010). *Multivariable Calculus*. Massachusetts Institute of Technology: MIT Open Course Ware, https://ocw.mit.edu...
