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Abstract: In this paper, we prove a main theorem dealing the matrix summability of Legendre series 

using non-negative monotonic non-increasing sequences of function. This paper is more general than [9], 

[12] and [22]. 
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1. Introduction                   
The Legendre series associated with the Lebesgne integral function in the linear interval [1, 1] is defined 
by  

     ∑         
           (1) 

  where   = (     )∫      
                  (2) 

and Legendre polynomials      , are defined by following expression   

 
√         = ∑         

   .         (3) 

However, if the coefficient    s are not restricted by our relation (2), the series (1) is known as series of 
Legendre polynomials      [ ] [ ] [ ] [ ] [  ] [  ] [  ] [  ]   In 1965, Saxena [19] for the first 
mathematician who introduced the actual concept of uniform N ̈rlund  Summability of Fourier series and 
which is defined as follows : 

Let                                     (4) 

be any infinite series and define  

                                        (5) 

1
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Let {  } be a sequence of constants, real or complex, and let us write 

                         (6) 

If their exits a function         

such that  
  

 ∑   {            } 
    = o          (7) 

uniformly in a set E in which      is bounded, then the series (4) is summable         uniformly in E to 
the sum  . Sahani et al.  [  ] [  ]   Mishra et al. [ ] [ ] [  ] [  ] [  ]   and Prasad [  ], the first 
Mathematicians to use a study on the behavior of absolute permanent matrix transformation, on the 
degree of approximation of a function by N ̈rlund means of its Fourier Laguere series, trigonometric 
approximation of functions        of generalized Lipschitz class by double Hausdorff matrix 
summability method, trigonometric approximation   -norm. On the degree approximation of signals 
belonging to generalized weighted Lipschitz   (       )       Class- by matrix (     )  operator of 
conjugate series, trigonometric approximation of periodic signals belonging to generalized weighted 

Lipschitz   (        ),      - class by N ̈rlund- Euler              operation of conjugate series of 
Fourier series, Using linear operator to approximate signals of Lip     ,       class and on the 
N ̈rlund summability of Legendre series. In an attempt to make an advance study in this direction we, in 
this paper establish a more general result than those of [8], [21], and [15] so their results come out as 
particular case. 

Definition: 

Let T = (    )  be an infinite triangular matrix of real constants and       denote the T-transform of {  }. 

Then                 ∑     (          ) 
     

                        = ∑       (            ) 
   .         (8) 

If their exits a function       such that        = 0   , as     

uniformly in E in which       is bounded, then the infinite series ∑  is summable     uniformly in E to 
           [ ]   

2. Main Results 
Theorem:    

If {    }   
  be a real, non-negative monotonic non-increasing sequence and   (    ) be an infinite 

triangular matrix, where      = ∑         
         =1  for     and if  

    =∫ |    | 
    =  .

 ( 
 )  

       / 

as     , uniformly in E in -1     in which      is bounded , where  ( 
 ) and 

 ( 
 )  

        increases 

monotonic with  , then the Legendre series      is summable     uniformly in E to the sum     . 

For the proof of our theorem, we require the following  
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Lemma 1 (see[21]) 

∑        
                =      [                             ]   .         (9) 

This identity is known as Christoffel's formula of summation. 

Lemma 2 (see [4]) 

For          ,  

          = √  
           *        

 + + O( 
  
 )                                            (10) 

   Lemma 3 (see [7])  

If {    } is a non-negative and non-increasing sequence with respect to k, then for            

      and for every n, we have 

        |∑               
   | = O*         +                              (11) 

      Where   is the integral part of     

Lemma 4:             

    For      
 ,  |     | = o     as             (12) 

Proof:  

We know that         = ∑        
   

           
     

                 (13) 

 |     |  |∑        
   

           
    

 
 |  |∑        

   
              

     
|    ∑        

    

                =    O   , ( by  hypothesis of theorem ) 

                = O(1). 

Lemma 5 : 

 For               =  (     ),     

Proof :  

  |     |  |∑       
           

    
 

 
   |  |  

     
    ∑        

             |    

                     
  Im ∑        

             
  |∑        

           | 

                          =              ( by, lemma 3) 

                        = O(     ).  
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Proof of the theorem. 

The      partial sum of the series  (1) is given by  

      = ∑         
     

         = ∑ (   
 )

 
    ∫                 

 
      (  by 2) 

        = ∑ (     ) 
   ∫                 

 
    

         = (    ) ∫ ,                                        - 
                                    (by 9) 

Putting          then  

I = (    )∫
                             

        
   

Thus,       -    =     ∫ [         ]  
  

                            
          

Hence   by (8), we have  

     = ∑        
     {            }  

         = ∑        
           ∫      

 
 
  {         } {                                  }        

          = ∑ (             )   
   ∫ [         ] 

   ,{                                  }     -       

We define a positive number S which is less than 1 i.e.     and also consider it as the sum of other 
two positive numbers        . 

Let     and        and         be two continuous functions of x such that                 

 and which lies within                   

Thus, for           , we have,  

       =  ∑       (
     

 )   
   *∫  ∫  ∫   

     
     
    

    
  +           

                     ∫ [         ] 
  

[                                   ]
           

             =∑          
    [                       ] + O(1).                        (14)   

Hobson [8] has shown  that uniformly for            

                              
      = 0,      

and               
     = 0. 

Now let us suppose that                        

     ,                     
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       =     =            

       , then we have  

     
   and      

 . 

Thus if   denote the minimum of [                  ]  for           ,  

we have on the lines of Sansone [21], 

          =       ∫ [               ]     
   Sin                                                                      

In which                       using lemma 2 

and for       we get after simplification 

          =  
  √     ∫ {                √     }   

   2               
       

           (      )

       
  *  

      +3    

Thus, 

     = 
  

  √    
∑          
   ∫ [               ]   

   √    .2                
   (    )

           (      )

   (    )
3+ O*  

      +    

          =                       (15) 

For     

         =   
 √     ∑          

   ∫ [ (        )         ] 
 √        .            

     
   

           =  
 √     ∫ [ {        }         ] 

  √        . ∑          
   

           
     

 dt 

           =O*∫ |    |        
 
 +             (by given condition ) 

            = O[∫  ∫    
 

 
 
 ] |     | |     |   

             =      +               (16) 

Using lemma 4 in     , we have  

    = O[∫ |    | |     |  
 
 
 ]   

      = O[ ∫ |    |  
 
 
 ]    = O0    .

 
      
    /1, by given condition  

      = O*(        )+   

        = O    as     
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       = O     as    , uniformly  in E.       (17) 

Again, using lemma 5, we have  

      O[∫ |    | |     |  
 
 
 

]  

      = O[∫ |    | 
 
 

    
   ] 

       = *         + 
 

 
+O[∫      

         
 
 

] +O[∫     
 

 
 
 

 (    )]  

         = O 0       .
   (  )
      /1 

 

 
+ O0∫      

   .
   (  )
      /

 
 
 

1 + O0∫    
 

.
   (  )
      / 

    
 1    

          = O0     
 (  )

   (  )
1+O*            ++O[     

       ∫
     
     

 
 

]+  O[     
       ∫

 (     )
 

 
 
 

], (by hypothesis of  the theorem) 

= O   +O*        
     ++O0     

       2(
    
 ) 

 

 
 ∫  (     )

 
 
 
 

31+O[     
       ∫

 (     )
 

 
 
 

] 

= O    +O*        +   0     
      (

    
 ) 

 

 
1+O[     

         ∫
 (     )

 
 
 
 

] 

= O     + O*           +  O*               ++ O[     
        ∫    (    )

 
 
 

]+O0     
         .

     
 /1 (      ) 

= O    +O[     
        ∫  (    )

 
 
 

]+O   +*               ++O*            + 

= O    +*           ∑        
   ++O   +O(     

      )+(     
      ) 

= O   +O*            +  *            ++O    

= O     O               as    , (by the given condition ) 

                  = O   , as     , uniformly in E.          (18) 

               Similarly,          as    , and          as    , uniformly in E.   (19) 

Combining (15), (16),(17), (18) and (19), we get the required results. 

This completes the proof of the theorem.  
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Conclusion  

In this paper, we prove a general theorem for some problems on approximation of function (signals) 
using in matrix summability of Legendre series. This general theorem enriches the literature of 
summability theory and create basis for future researchers.  
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Abstract: Tribhuvan University has designed their undergraduate BBA program by offering 
students the possibility to customize their educational program through the specialization in four 
different areas: banking & finance, industry and services management, micro enterprise 
management, and sales and marketing management. However, students have been specializing only 
in two courses namely: banking & finance, and sales and marketing. In this regard, the study aims at 
understanding the specialization choice of such students, as marketers need to be more aware of the 
underlying factors considered by students when choosing specialization and design the product 
offerings in this competitive market. 
The study has the objective of examining the effect of various decision-making variables on the specialization 
choice of undergraduate students from a consumer behavior perspective.  

Keywords: Social factor, Future prospect consideration, GPA, Selection, Specialization course 

1. Introduction  

In the era of globalization and technological revolution, education has become one of the major catalysts for 
socio-economic changes around the globe (Cavus, Geri, & Turgunbayeva, 2015). A career in management has 
become of prime importance, as management itself is a very wide discipline with vast areas of specialization 
to choose. The choice of a college courses as specialization is one of the most important decisions to be made 
by a prospective college student (Brown, 2004). Selection of a particular specialization course is not only 
important in one’s academic life but also in the future personal life because it has an influence on the 
academics continuity, student’s satisfaction, career and employment opportunities, financial compensation and 
finally the social status. Such decision is so serious that it has lifetime implications and consequences (Lent, 
2005). 

Due to the increasing competitive forces with the increased institutions of higher education in Nepal, 
marketers need to be more aware of the underlying factors considered by students when choosing 
specialization in the undergraduate courses. General Bachelor of Business Administration (BBA) of Tribhuvan 
University has been offering the four specialization courses in 7th and 8th semester. The specialization area of 
courses consist of banking & finance, industry and services management, micro enterprise management, and 
sales and marketing management. However, the TU BBA students have been selecting the only two courses 
among the alternatives provided (Examination Controller Division, 2019). 




